资源类型

期刊论文 140

会议视频 2

年份

2023 5

2022 13

2021 15

2020 6

2019 25

2018 7

2017 9

2016 5

2015 4

2014 4

2013 3

2012 5

2011 8

2010 4

2009 2

2008 8

2007 7

2005 2

2004 1

2002 2

展开 ︾

关键词

等离子体 3

Cu(In 2

Ga)Se2 2

原子层沉积 2

双层辉光离子渗金属 2

无氢渗碳 2

2型糖尿病 1

Al2O3-MxOy 1

PDT 1

三峡工程 1

三维适形放疗 1

二氧化钛 1

低温 1

保角变换 1

先进制造 1

光学等离子体重建;边缘检测;全局对比度;最小二乘法;EAST托卡马克 1

光谱信息 1

克努森蒸发源 1

凝结 1

展开 ︾

检索范围:

排序: 展示方式:

Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition

Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 330-339 doi: 10.1007/s11705-019-1803-6

摘要: Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.

关键词: plasma polymers     conformal plasma deposition     chlorhexidine     bactericide     PDMS     biocompatibility    

The role of ions in plasma catalytic carbon nanotube growth: A review

Erik C. Neyts

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 154-162 doi: 10.1007/s11705-015-1515-5

摘要: While it is well-known that the plasma-enhanced catalytic chemical vapor deposition (PECVD) of carbon nanotubes (CNTs) offers a number of advantages over thermal CVD, the influence of the various individual contributing factors is not well understood. Especially the role of ions is unclear, since ions in plasmas are generally associated with sputtering rather than with growing a material. Even so, various studies have demonstrated the beneficial effects of ion bombardment during the growth of CNTs. This review looks at the role of the ions in plasma-enhanced CNT growth as deduced from both experimental and simulation studies. Specific attention is paid to the beneficial effects of ion bombardment. Based on the available literature, it can be concluded that ions can be either beneficial or detrimental for carbon nanotube growth, depending on the exact conditions and the control over the growth process.

关键词: plasma-enhanced chemical vapor deposition (PECVD)     carbon nanotube (CNT)     ion bombardment     defect healing    

Where physics meets chemistry: Thin film deposition from reactive plasmas

Andrew Michelmore, Jason D. Whittle, James W. Bradley, Robert D. Short

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 441-458 doi: 10.1007/s11705-016-1598-7

摘要: Functionalising surfaces using polymeric thin films is an industrially important field. One technique for achieving nanoscale, controlled surface functionalization is plasma deposition. Plasma deposition has advantages over other surface engineering processes, including that it is solvent free, substrate and geometry independent, and the surface properties of the film can be designed by judicious choice of precursor and plasma conditions. Despite the utility of this method, the mechanisms of plasma polymer growth are generally unknown, and are usually described by chemical (i.e., radical) pathways. In this review, we aim to show that plasma physics drives the chemistry of the plasma phase, and surface-plasma interactions. For example, we show that ionic species can react in the plasma to form larger ions, and also arrive at surfaces with energies greater than 1000 kJ?mol (>10 eV) and thus facilitate surface reactions that have not been taken into account previously. Thus, improving thin film deposition processes requires an understanding of both physical and chemical processes in plasma.

关键词: thin films     plasma physics     plasma chemistry     functionalization     polymer    

Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma

Bin Xu, Toshiro Kaneko, Toshiaki Kato

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 485-492 doi: 10.1007/s11705-019-1831-2

摘要: A pulse plasma chemical vapor deposition (CVD) technique was developed for improving the growth yield of single-walled carbon nanotubes (SWNTs) with a narrow chirality distribution. The growth yield of the SWNTs could be improved by repetitive short duration pulse plasma CVD, while maintaining the initial narrow chirality distribution. Detailed growth dynamics is discussed based on a systematic investigation by changing the pulse parameters. The growth of SWNTs with a narrow chirality distribution could be controlled by the difference in the nucleation time required using catalysts comprising relatively small or large particles as the key factor. The nucleation can be controlled by adjusting the pulse on/off time ratio and the total processing time.

关键词: single-walled carbon nanotubes     chirality-controlled synthesis     pulse plasma chemical vapor deposition    

Preparation of TiO

Shenghung WANG, Kuohua WANG, Jihmirn JEHNG, Lichen LIU

《环境科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 304-312 doi: 10.1007/s11783-010-0297-8

摘要: Titanium dioxide is coated on the surface of MCM-41 wafer through the plasma enhanced chemical vapor deposition (PECVD) method using titanium isopropoxide (TTIP) as a precursor. Annealing temperature is a key factor affecting crystal phase of titanium dioxide. It will transform an amorphous structure to a polycrystalline structure by increasing temperature. The optimum anatase phase of TiO which can acquire the best methanol conversion under UV-light irradiation is obtained under an annealing temperature of 700°C for 2 h, substrate temperature of 500°C, 70 mL·min of oxygen flow rate, and 100 W of plasma power. In addition, the films are composed of an anatase-rutile mixed phase, and the ratio of anatase to rutile varies with substrate temperature and oxygen flow rate. The particle sizes of titanium dioxide are between 30.3 nm and 59.9 nm by the calculation of Scherrer equation. Under the reaction conditions of 116.8 mg·L methanol, 2.9 mg·L moisture, and 75°C of reaction temperature, the best conversion of methanol with UV-light is 48.2% by using the anatase-rutile (91.3/8.7) mixed phase TiO in a batch reactor for 60 min. While under fluorescent light irradiation, the best photoactivity appears by using the anatase-rutile (55.4/44.6) mixed phase TiO with a conversion of 40.0%.

关键词: photocatalyst     titanium dioxide     MCM-41     plasma enhanced chemical vapor deposition (PECVD)    

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 85-91 doi: 10.1007/s11708-016-0437-3

摘要: The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage ( ) of up to 0.732 V.

关键词: PECVD     high pressure and high power     a-Si:H microstructure     passivation     heterojunction solar cell    

Scaling up of cluster beam deposition technology for catalysis application

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1360-1379 doi: 10.1007/s11705-021-2101-7

摘要: Many research works have demonstrated that the combination of atomically precise cluster deposition and theoretical calculations is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials. Although the wet chemistry method has been widely used to synthesize nanoparticles, the gas-phase synthesis and size-selected strategy was the only method to prepare supported metal clusters with precise numbers of atoms for a long time. However, the low throughput of the physical synthesis method has severely constrained its wider adoption for catalysis applications. In this review, we introduce the latest progress on three types of cluster source which have the most promising potential for scale-up, including sputtering gas aggregation source, pulsed microplasma cluster source, and matrix assembly cluster source. While the sputtering gas aggregation source is leading ahead with a production rate of ~20 mg·h–1, the pulsed microplasma source has the smallest physical dimensions which makes it possible to compact multiple such devices into a small volume for multiplied production rate. The matrix assembly source has the shortest development history, but already show an impressive deposition rate of ~10 mg·h–1. At the end of the review, the possible routes for further throughput scale-up are envisaged.

关键词: nanoparticle     cluster     cluster beam deposition     magnetron sputtering     heterogeneous catalysis    

DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial

Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 526-530 doi: 10.1007/s11783-013-0532-1

摘要: In this study, DOW CORNING 1-2577 Conformal Coating was proposed for the cathode diffusion layer of the microbial fuel cell (MFC). In MFCs, stainless steel mesh cathodes using DOW CORNING 1-2577 Conformal Coating/carbon as the diffusion layer and two poly (dimethylsiloxane) (PDMS)/carbon diffusion layers and carbon cloth cathode with four poly (tetrafluoroethylene) (PTFE) diffusion layers were constructed for comparison. Under the same operational condition, the MFCs with the DOW CORNING 1-2577 Conformal Coating/carbon diffusion layer produced the maximum power density of 1585±52 mW·m , compared with those using poly (tetrafluoroethylene) (PTFE) diffusion layers (1421±45 mW·m ) and poly (dimethylsiloxane) (PDMS)/carbon diffusion layers (1353±49 mW·m ). The DOW CORNING 1-2577 Conformal Coating could be an alternative for the diffusion layer construction in the MFC due to its remarkable performance and much simple construction procedure.

关键词: microbial fuel cell     diffusion layer     power density     DOW CORNING1-2577 Conformal Coating    

原发性肝癌三维适形和调强放疗的基础和临床研究

蒋国梁

《中国工程科学》 2009年 第11卷 第10期   页码 129-136

摘要:

报告三维适形(3-dimensional conformal radiation therapy, 3DCRT)和调强放疗(intensity-modulated

关键词: 三维适形放疗     束流调强放疗     肝细胞性肝癌     肝脏放射耐受性    

Diagnostic evaluation of plasma aldosterone concentration to plasma renin activity ratio in primary aldosteronism

ZHANG Huilan, WANG Daowen

《医学前沿(英文)》 2008年 第2卷 第1期   页码 11-14 doi: 10.1007/s11684-008-0003-4

摘要: Using the plasma aldosterone concentration to plasma renin activity ratio (PAC/PRA ratio) as the screening test of choice for primary aldosteronism in hypertensive patients, we studied the clinical characteristics and the diagnostic value of PAC/PRA ratio in primary aldosteronism. The plasma aldosterone concentration (PAC) and plasma renin activity (PRA) levels were measured by radioimmunoassay in 902 hypertensive patients from out-patient clinics or hospitals. One hundred and twenty-six suspected primary aldosteronism patients whose PAC/PRA ratio was > 25 ng/dL/ng/mL/hr had a lamellar computed tomography (CT) scan in the adrenal gland and follow-up visits. The proportion of primary aldosteronism in hypertensive patients was 14% (126/902). There were 54 patients with unilateral or bilateral hyperplasia and 25 patients with adenoma according to the CT scan. 39% (49/126) of the patients with primary aldosteronism had hypokalemia. Twenty-five patients received surgical treatment. The efficacy and cure rates were 100% (25/25) and 48% (12/25), respectively. The effective rate of aldactone and the single-drug cure rate were 89% (48/54) and 24% (13/54), respectively. Primary aldosteronism affects over 10% of hypertensive patients in China. The PAC/PRA ratio can be considered as a routine screening test in hypertensives, especially resistant hypertensive patients and a high PAC/PRA ratio is an invaluable index in primary aldosteronism diagnosis.

Effect of carbon deposition over carbonaceous catalysts on CH

Yongfa ZHANG, Meng ZHANG, Guojie ZHANG, Huirong ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 481-485 doi: 10.1007/s11705-010-0523-8

摘要: An investigation was made using a continuous fixed bed reactor to understand the influence of carbon deposition obtained under different conditions on CH -CO reforming. Thermogravimetry (TG) and X-ray diffraction (XRD) were employed to study the characteristics of carbon deposition. It was found that the carbonaceous catalyst is an efficient catalyst in methane decomposition and CH -CO reforming. The trend of methane decomposition at lower temperatures is similar to that at higher temperatures. The methane conversion is high during the initial of stage of the reaction, and then decays to a relatively fixed value after about 30 min. With temperature increase, the methane decomposition rate increases quickly. The reaction temperature has significant influence on methane decomposition, whereas the carbon deposition does not affect methane decomposition significantly. Different types of carbon deposition were formed at different methane decomposition reaction temperatures. The carbon deposition Type I generated at 900°C has a minor effect on CH -CO reforming and it easily reacts with carbon dioxide, but the carbon deposition Type II generated at 1000°C and 1100°C clearly inhibits CH -CO reforming and it is difficult to react with carbon dioxide. The results of XRD showed that some graphite structures were found in carbon deposition Type II.

关键词: carbon deposition     carbonaceous catalyst     CH4-CO2 reforming    

Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief

Anna Khlyustova, Cédric Labay, Zdenko Machala, Maria-Pau Ginebra, Cristina Canal

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 238-252 doi: 10.1007/s11705-019-1801-8

摘要: Reactive oxygen and nitrogen species (RONS) are among the key factors in plasma medicine. They are generated by atmospheric plasmas in biological fluids, living tissues and in a variety of liquids. This ability of plasmas to create a delicate mix of RONS in liquids has been used to design remote or indirect treatments for oncological therapy by treating biological fluids by plasmas and putting them in contact with the tumour. Documented effects include selective cancer cell toxicity, even though the exact mechanisms involved are still under investigation. However, the “right” dose for suitable therapeutical activity is crucial and still under debate. The wide variety of plasma sources hampers comparisons. This review focuses on atmospheric pressure plasma jets as the most studied plasma devices in plasma medicine and compiles the conditions employed to generate RONS in relevant liquids and the concentration ranges obtained. The concentrations of H O , NO , NO and short-lived oxygen species are compared critically to provide a useful overview for the reader.

关键词: atmospheric plasma jets     liquids     ROS     RNS     plasma-dose    

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Daniil Marinov

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 815-822 doi: 10.1007/s11705-019-1837-9

摘要: Reactions of atoms and molecules on chamber walls in contact with low temperature plasmas are important in various technological applications. Plasma-surface interactions are complex and relatively poorly understood. Experiments performed over the last decade by several groups prove that interactions of reactive species with relevant plasma-facing materials are characterized by distributions of adsorption energy and reactivity. In this paper, we develop a kinetic Monte Carlo (KMC) model that can effectively handle chemical kinetics on such heterogenous surfaces. Using this model, we analyse published adsorption-desorption kinetics of chlorine molecules and recombination of oxygen atoms on rotating substrates as a test case for the KMC model.

关键词: plasma-surface interaction     kinetic Monte Carlo     plasma nano technology    

From plasma to plasmonics: toward sustainable and clean water production through membranes

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1809-1836 doi: 10.1007/s11705-023-2339-3

摘要: The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.

关键词: water treatment     membrane-based process     plasma treatment     plasma polymerization     plasmonic     light-to-heat conversion    

Influence mechanism of dynamic and static liquid bridge forces on particle deposition behaviors in solar

Xueqing LIU, Xiaodong ZHAO, Luyi LU, Jianlan LI

《能源前沿(英文)》 2021年 第15卷 第2期   页码 499-512 doi: 10.1007/s11708-021-0742-3

摘要: Solar energy is one of the most promising forms of renewable energy for solving the energy crisis and environmental problems. Dust deposition on photovoltaic mirrors has a serious negative impact on the photoelectric conversion efficiency of solar power stations. In this paper, the influence mechanism of the dynamic and static liquid bridge forces on particle deposition behaviors on solar photovoltaic mirrors is investigated. In addition, the expression and physical meaning of the particle critical separation velocity are proposed. The research results show that the static liquid bridge force can be the primary deposition force causing dust particles to adhere to photovoltaic mirrors. However, the dynamic liquid bridge force can act as a resistance force for the particle motion process and even make dust particles roll along and finally stay on the mirror. The contact force is the primary separation force that causes dust particles to flow away from the mirror. Whether dust particles adhere to the mirror depends on the relative size of the deposition and separating forces. The particle critical separation velocity describes the relative size of the collision-rebound effect and mirror adhesion effect and is expressed in Eq. (16). These research findings can provide theoretical guidance for mirror cleaning methods in the operation process of photovoltaic mirrors.

关键词: dust deposition     discrete element method (DEM)     photovoltaic mirrors     solar energy    

标题 作者 时间 类型 操作

Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition

Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco

期刊论文

The role of ions in plasma catalytic carbon nanotube growth: A review

Erik C. Neyts

期刊论文

Where physics meets chemistry: Thin film deposition from reactive plasmas

Andrew Michelmore, Jason D. Whittle, James W. Bradley, Robert D. Short

期刊论文

Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma

Bin Xu, Toshiro Kaneko, Toshiaki Kato

期刊论文

Preparation of TiO

Shenghung WANG, Kuohua WANG, Jihmirn JEHNG, Lichen LIU

期刊论文

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

期刊论文

Scaling up of cluster beam deposition technology for catalysis application

期刊论文

DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial

Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN

期刊论文

原发性肝癌三维适形和调强放疗的基础和临床研究

蒋国梁

期刊论文

Diagnostic evaluation of plasma aldosterone concentration to plasma renin activity ratio in primary aldosteronism

ZHANG Huilan, WANG Daowen

期刊论文

Effect of carbon deposition over carbonaceous catalysts on CH

Yongfa ZHANG, Meng ZHANG, Guojie ZHANG, Huirong ZHANG

期刊论文

Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief

Anna Khlyustova, Cédric Labay, Zdenko Machala, Maria-Pau Ginebra, Cristina Canal

期刊论文

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Daniil Marinov

期刊论文

From plasma to plasmonics: toward sustainable and clean water production through membranes

期刊论文

Influence mechanism of dynamic and static liquid bridge forces on particle deposition behaviors in solar

Xueqing LIU, Xiaodong ZHAO, Luyi LU, Jianlan LI

期刊论文